Skip to contents

An all-in-one DAG-driven robustness check. Classify variables by causal role, compute the smallest and largest permissible back-door adjustment sets, and compare the significance of models.

See the Quick Tour vignette for a 10 minute start-to-finish guide on how to use DAGassist to identify causal roles, create reports, and interpret the results.

See the Making Reports vignette for details on producing publication-quality DAGassist reports in LaTex, Word, Excel, and plain text.

See the Parameter Guide vignette for examples of how to get the most out of DAGassist.

See the Supported Models vignette for documentation on what engines DAGassist supports.

Installation

You can install the development version of DAGassist from GitHub with:

install.packages("pak")
pak::pak("grahamgoff/DAGassist")

DAGassist example

Simply provide a dagitty() object and a regression call and DAGassist will create a report classifying variables by causal role, and compare the specified regression to minimal and canonical models.

library(DAGassist) 

DAGassist(dag = dag_model, 
          formula = feols(Y ~ X + M + C + Z + A + B, data = df))
#> DAGassist Report: 
#> 
#> Roles:
#> variable  role        X  Y  conf  med  col  IO  dMed  dCol
#> X         exposure    x                                   
#> Y         outcome        x                      x         
#> Z         confounder        x                             
#> M         mediator                x                       
#> C         collider                     x    x   x         
#> A         other                                           
#> B         other                                           
#> 
#>  (!) Bad controls in your formula: {M, C}
#> Minimal controls 1: {Z}
#> Canonical controls: {A, B, Z}
#> 
#> Formulas:
#>   original:  Y ~ X + M + C + Z + A + B
#> 
#> Model comparison:
#> 
#> +---+-----------+-----------+-----------+
#> |   | Original  | Minimal 1 | Canonical |
#> +===+===========+===========+===========+
#> | X | 0.452***  | 1.256***  | 1.256***  |
#> +---+-----------+-----------+-----------+
#> |   | (0.032)   | (0.027)   | (0.026)   |
#> +---+-----------+-----------+-----------+
#> | M | 0.514***  |           |           |
#> +---+-----------+-----------+-----------+
#> |   | (0.021)   |           |           |
#> +---+-----------+-----------+-----------+
#> | C | 0.343***  |           |           |
#> +---+-----------+-----------+-----------+
#> |   | (0.019)   |           |           |
#> +---+-----------+-----------+-----------+
#> | Z | 0.249***  | 0.311***  | 0.309***  |
#> +---+-----------+-----------+-----------+
#> |   | (0.027)   | (0.034)   | (0.033)   |
#> +---+-----------+-----------+-----------+
#> | A | 0.152***  |           | 0.187***  |
#> +---+-----------+-----------+-----------+
#> |   | (0.021)   |           | (0.026)   |
#> +---+-----------+-----------+-----------+
#> | B | -0.069*** |           | -0.057*   |
#> +---+-----------+-----------+-----------+
#> |   | (0.021)   |           | (0.026)   |
#> +===+===========+===========+===========+
#> | + p < 0.1, * p < 0.05, ** p < 0.01,   |
#> | *** p < 0.001                         |
#> +===+===========+===========+===========+

# note: this example uses a test DAG and dataset, which was created
# silently to avoid confusion.